

Benefits of water level radars are out in the open



Peter Devine Technical Manager

**VEGA Controls Limited** 



### Introduction

**VEGA** 

Founded in the Black Forest in 1959. UK since 1982. Worldwide process instrumentation company.





Specialists in Level & Pressure measurement technology. Leaders in RADAR level measurement

## The challenge . . .

... reliable flood level monitoring in diverse environments.



## **ERYC** monitoring

- Data gathering system
- Outstations
- Information distribution
- Information uses







## **ERYC** experience

- Submersible hydrostatics were most common technology
- Typical installation
  - In conduit
- High maintenance
  - Silting
  - Damage when in spate
  - Freezing issues
  - Mechanical drift of cell



### **ERYC Experience**

- Ultrasonics were used where hydrostatics were unsuitable
- Benefits of being non-contact
- However, transducers needed cleaning
- "Loss of echo" spikes caused by condensation, dirt & high winds
- False alarms & call outs



#### **Tidal inlet - Humber**



### Hydrostatic Level

- Unsuitable due to tidal flow and silting
- Sensor materials need to be suitable for salt water environment

#### Ultrasonic Level

- Sound signal affected by wind and direct sunlight.
- Stilling tubes have been used on similar applications – significant installation and maintenance costs

### **River Aire**



### Hydrostatic Level

- Unsuitable due to nature of the river bank
- Difficult and potentially dangerous to install and maintain from bridge structure

#### Ultrasonic Level

- Measurement range 10-12 metres off bridge structure
- Long range for ultrasound
- Sound signal badly affected by wind over longer range

A more reliable measurement technology?















## **ERYC Installation** of Radar Sensors

- Challenges
- Mounting Devices
- Operational Requirements
- Performance





## **Good co-operation**



## **Commissioning & Maintenance Tool**



- VEGA designed and supplied a bespoke portable power supply & PACTware software connection tool.
- Simple common plug enabled connection of the portable sensor power supply & laptop interface unit.
- Allowing sensor optimization or troubleshooting.
- PACTware / VEGA DTM software
  - Saves sensor databases
  - Produces documentation

# Examples of diverse ERYC radar level installations







## **Rural locations**









## **Any location**





Further examples of radar level for flood level monitoring.

## **EA Thames Barrier** & tidal River Thames

Radar with simple bracket





Plus locally made protection from perching gulls & pigeons



## **Diverse EA Installations**

Tidal inlet Hampshire Coast. Simple bracket





River Thames 45 degree reflector installation

## **Diverse EA Installations**

River Wey Surrey Simple bracket



River Test Hampshire Simple bracket



## **Diverse EA Installations**



Urban Berkshire Flood alleviation. Provision for GSM/GRPS logger



Urban Surrey with provision for GSM/GRPS logger

## **Diverse EA Installations**

Previous high maintenance ultrasonic installation





Rural Leicestershire Water Radar in left tube & data logger in right tube



## **Diverse EA Installations**



Rural Nottinghamshire Simple installation Previous ultrasonic installation with sun shield



## Sluice Gate Position (IDB)





Sluice Gate Position Reference target 350x350 mm





## Sluice Gate Control

- Existing level measurement for the control included two ultrasonics in stilling tubes
- High cost of mechanical installation and maintainence call outs for Ultrasonics.
- Two Water Radars WL61s installed on simple uni-strut.
- Lower overall installed cost and more reliable







### **SEPA Test Site**

- Extended tests of Water Radar and Ultrasonic sensor (by others)
- Data showed sunlight temperature effects on ultrasonic
- The sun shield above the two sensors was "unsuccessful" in improving ultrasonic issues.





## **Tide Measurement**

## Humber



Radar on bracket Top of ultrasonic Measurement tube can be seen.



Storm damaged ultrasonic Measurement tube lying on the shore



## Developments?







## 80 GHz radar technology

Already here with process radar

Smaller antennas

Better focussing

Even better with build up and condensation

Better with foam on liquid surface



"Thank you for listening"